

CMSC 201 – Computer Science I for Majors Page 1

CMSC 201 Spring 2016
Lab 08 – Strings and File I/O

Assignment: Lab 08 – Strings and File I/O
Due Date: During discussion, April 4th through April 7th
Value: 10 points

Part 1: File Input

Using files as input is a much quicker and easier way to get information from
the user, especially for large amounts of data. Rather than having the user
enter everything by hand, we can read in the data from a file.

To open a file for reading, we use the following command:

myInputFile = open("theFile.txt", "r")

This line of code does three things:

1. It opens the file theFile.txt

2. The file is opened for reading ("r") – as opposed to writing

3. The opened file is assigned to the variable myInputFile

Once we have opened a file and assigned it to a variable, we can use that
variable to access the file. There are four different ways to read in a file.

1. Read the entire file in as one enormous string (including newlines)
myInputFile.read()

2. Read the file in as a list of strings (each line being a single string)
myInputFile.readlines()

3. Read in a single line of the file
myInputFile.readline()

4. Iterate over the file using a for loop, reading in a line each loop
for singleLine in myInputFile:

 # singleLine contains a line from the file

CMSC 201 – Computer Science I for Majors Page 2

Often, if we want to extract or examine data from a file, the last option (using a
for loop to iterate over the lines of the file) makes the most sense to use.

Below, you can see an example where we read in from a file, printing only
those lines that are exactly 36 characters long.

inputFile = open("road.txt") # Robert Frost's poem

for line in inputFile:

 line = line.strip() # remove the newline (and

 # any other whitespace)

 if len(line) == 36: # choose the lines to print

 print(line)

inputFile.close()

When the file “road.txt” contains the poem “The Road not Taken” by Robert
Frost, the code above prints out only those lines that contain exactly 36
characters. The output looks like this:

Two roads diverged in a yellow wood,

To where it bent in the undergrowth;

And having perhaps the better claim,

Though as for that the passing there

Had worn them really about the same,

In leaves no step had trodden black.

Yet knowing how way leads on to way,

Two roads diverged in a wood, and I—

CMSC 201 – Computer Science I for Majors Page 3

Part 2: String Manipulation

This is fine, but often we want to look at the contents of a line, and make a
decision based on that, rather than on something trivial like the line length.

For example, we may have a file that contains information about our
employees and how many hours they worked this week. Using this
information, we want to be able to determine which employees are full-time
(work 30 hours or more) and which are part-time.

If we know the format of the file we are reading in, we can take advantage of
the split() function to assign each “word” in a line to individual variables.

If we take a look at the totalHours.txt file,

we can see that each line is formatted the same:
employee id, employee name, and the total
hours worked that week. Since we know the
format, we can directly assign each piece to a
separate variable, and use those variables to
help decide which employees are full-time.

One important thing to remember is that all of these variables will be strings to
start off – so if we want to use them as integers or floats, we will need to first
cast them to be that type.

workerHours = open("hours.txt")

for line in workerHours:

 # directly assign each "word" to a variable

 id, name, hours = line.split()

 # remember to cast to another type if needed

 if (float(hours) >= 30):

 print(name, "is a full-time employee")

 else:

 print(name, "is only a part-time worker")

don't forget to close the file!

workerHours.close()

totalHours.txt

123 Susan 18.5

456 Brad 35.0

789 Jenn 39.5
101 Thom 28.6

CMSC 201 – Computer Science I for Majors Page 4

The code on the previous page will give us the following output:

Susan is only a part-time worker

Brad is a full-time employee

Jenn is a full-time employee

Thom is only a part-time worker

By default, the split() function uses whitespace (spaces, newlines, tabs,

etc.) as the delimiter, i.e., the boundary between what constitutes a “word.”
However, we can also give it a specific character (or characters) to split on.
Here’s an example from class:

nonsense = "nutty otters making lattes"

nonsense = nonsense.split("tt")

print(nonsense)

which will output this list of strings:

['nu', 'y o', 'ers making la', 'es']

This is a bit of a silly example – normally, if we are not splitting on the
whitespace, we are likely splitting on some other sort of separator character.
Using commas, semicolons, and underscores are all common choices, as can
be seen in the example code below:

famous = "Bill Nye, the science guy"

famous = famous.split(",")

print(famous)

which will output this list of strings:

['Bill Nye', ' the science guy']

CMSC 201 – Computer Science I for Majors Page 5

Part 3: File Output

Printing your output to a file instead of the terminal is a great way to store
information for future use, or when there is so much information it would
overwhelm the user.

To open a file for writing, we use the following command:

myOutputFile = open("theFile.txt", "w")

This line of code does three things:

1. It opens the file theFile.txt

2. The file is opened for writing ("w") – as opposed to reading

3. The opened file is assigned to the variable myOutputFile

Notice that the only difference between using open() to open a file for

writing versus for reading is the letter given to select the access mode: “w” for

write, and “r” for read.

When a file is opened for writing, the contents of the file are wiped – in other
words, the information the file used to contain has been deleted.

Once we have opened a file and assigned it to a variable, we can use that
variable to write to the file, using the appropriately-named write() function.

Although using write() may seem similar to print(), the two actually

work and behave very differently.

The main difference is that write() only works when given a single string.

It can handle two strings that are concatenated together (since they are
evaluated by Python to a single string), but it cannot handle multiple strings or
variables separated by commas.
Additionally, when non-string variables are concatenated onto a string, they
must first be cast to a string.

this will NOT work

myOutputFile.write(name, "is now", age)

this will work

myOutputFile.write(name + " is now " + str(age))

CMSC 201 – Computer Science I for Majors Page 6

The other difference is that write() does not automatically add a newline to

the end of each printed line. Instead, you must include the escape sequence
for a newline (“\n”) at the end of the string you are writing. Both of the

following ways of including a newline will work:

at the end of the last string

myOutputFile.write("Line one\n")

concatenated to the end of the string

myOutputFile.write("Line " + str(2) + "\n")

Part 4: Using Multiple Files

One very important thing that Python does is it allows us to have more than
one file open at a time. The different files can be opened for reading, writing,
or appending! They can even be opened in different modes, like one file
opened for write and one opened for read.
This makes it very easy to directly write important information from one file to
another!

For example, if we wanted to read in a file and save a copy of it, but with the
copy in all capital letters, the following code would accomplish that:

inputFile = open("road.txt", "r")

outputFile = open("ROAD.txt", "w")

for line in inputFile: # read in the input

 capsLine = line.upper() # convert to all caps

 outputFile.write(capsLine) # print out the output

inputFile.close()

outputFile.close()

If we take a look at the file using the “more” command from the terminal, we

can see that everything has been capitalized now:

bash-4.1$ more ROAD.txt

TWO ROADS DIVERGED IN A YELLOW WOOD,

AND SORRY I COULD NOT TRAVEL BOTH

[and so on]

CMSC 201 – Computer Science I for Majors Page 7

Part 5A: Writing Your Program

After logging into GL, navigate to the Labs folder inside your 201 folder.

Create a folder there called lab8, and go inside the newly created lab8

directory.

linux2[1]% cd 201

linux2[2]% cd Labs

linux2[3]% pwd

/afs/umbc.edu/users/k/k/k38/home/201/Labs

linux2[4]% mkdir lab8

linux2[5]% cd lab8

linux2[6]% pwd

/afs/umbc.edu/users/k/k/k38/home/201/Labs/lab8

linux2[7]% █

To open the file for editing, type
 emacs gpa_calculator.py

and hit enter.

The first thing you should do in your new file is create and fill out the comment
header block at the top of your file. Here is a template:

File: gpa_calculator.py

Author: YOUR NAME

Date: TODAY'S DATE

Section: YOUR SECTION NUMBER

E-mail: USERNAME@umbc.edu

Description: YOUR DESCRIPTION GOES HERE AND HERE

YOUR DESCRIPTION CONTINUED SOME MORE

Part 5B below will explain the assignment. Then you can start writing your
code for the lab, following the instructions in Parts 5C and 5D.

CMSC 201 – Computer Science I for Majors Page 8

Part 5B: Assignment – Student Rosters

For Lab 8, you are given a file of student information. For this assignment, you
are going to iterate through each item in the file and calculate the GPA of each
student.

The data file includes the following text:

Tina;Smith;A;C;A

Brian;Rowe;B;A;C

Kenneth;Guy;B;C;B

Leonard;Peters;C;A;C

Venus;Guthrie;B;C;B

Jorden;Casey;B;B;C

Tiger;Hunter;C;F;A

Clinton;Jimenez;C;C;C

Joseph;Oliver;F;C;C

Armand;Howe;F;A;F

Jena;Ramsey;B;B;B

Guin;Bryant;B;B;B

Jael;Donald;B;A;B

Zen;Hubbard;B;B;B

Chase;Jenkins;C;A;

Lucian;Kim;B;A;C

Jaden;Rosario;B;D;C

Peter;Sherman;B;B;B

Zephr;Giles;C;A;A

Ima;Webb;B;B;C

Cruz;Goodman;B;B;A

Colette;Harris;A;A;B

To download this file, use the cp command:

cp /afs/umbc.edu/users/k/k/k38/pub/cs201/grades.txt .

From a design standpoint, the input for your program is the text file above.

Your job is to write code that taken advantage of the convertLetter()

function on the next page to help calculate each student’s GPA.

CMSC 201 – Computer Science I for Majors Page 9

def convertLetter(letter):

 if letter == "A":

 return 4

 elif letter == "B":

 return 3

 elif letter == "C":

 return 2

 elif letter == "D":

 return 1

 else:

 return 0

The output should be presented in two ways. First, it should be displayed to
screen. Second, the calculated results should be saved out to a text file.

Here is some (partial) sample output. The output to the file should be very
similar.

bash-4.1$ python gpa_calculator.py

Tina Smith's GPA is 3.3333333333333335

Brian Rowe's GPA is 3.0

Kenneth Guy's GPA is 2.6666666666666665

Leonard Peters's GPA is 2.6666666666666665

Venus Guthrie's GPA is 2.6666666666666665

Jorden Casey's GPA is 2.6666666666666665

Tiger Hunter's GPA is 2.0

Clinton Jimenez's GPA is 2.0

[etc]

You will be coding Lab 8 in an incremental manner – in other words, you will
code up one piece of the lab and test that it works before moving on to the
next piece. Incremental development is a very effective way of tackling a
problem, in part because it is easier to figure out where an error occurs when
you are only working on a small part of the code at a time.

First, write the code to read this file in, and store the information it
contains. (Don’t worry yet about handling that information.)

CMSC 201 – Computer Science I for Majors Page 10

Try to solve Part 5B on your own before you turn to these hints!

Getting an error that looks something like the following?

FileNotFoundError: [Errno 2] No such file or directory:

Make sure that you have downloaded the grades.txt file, and that you have

spelled the filename correctly when you attempt to open it.

Having trouble reading in the lines individually?
As stated in Part 1, if you want to extract or examine data from a file, using a
for loop to iterate over the lines of the file makes the most sense. See Part 1

for an example of the syntax.

Not sure how to parse the data on each line?
There are several key pieces of information. You can use the split command to
break each record up.

1. If you know the format of a file, you can assign each piece to a variable:
fname, lname, grade1, grade2, grade3 = line.split()

2. Although split() uses any white space as its default delimiter, you can

give it a different character to split on:
line.split(";")

Is your code not doing what it should, and you’re having trouble figuring out
exactly where it’s going wrong?
Try having your code print out what it’s seeing/doing at each point. For
example, if you’re having trouble assigning the parts to variables, try having it
print out each variable as it is read in and assigned – you may spot the
problem that way.

CMSC 201 – Computer Science I for Majors Page 11

Part 5C: Calculating GPAs and Saving the Results
Do not move on to this part until your program can read in the grades.txt

file!

Now that you have one piece of your program working, we can focus on the
next task.

Using the data that you read in from the file in Part 5B, iterate over each of the
students and calculate their GPA. Output the results to both the screen and
the output file “results.txt”.

You can check the contents of results.txt either by opening it in emacs, or

by using the following command to see the file in the terminal:
more results.txt

CMSC 201 – Computer Science I for Majors Page 12

Try to solve Part 5D on your own before you turn to these hints!

Does your results.txt file come out blank?
The most likely cause of this is that you are failing to write out each line of
output.

Is your results.txt file a jumbled mess?
Make sure that you are printing out newlines at the end of every entry.

Does everyone have really low GPAs?
If Colette Harris (the last student) has a 2.666, your program has an error!
Try to find it on your own before reading the next paragraph.

When given a character to split on, the split() function no longer removes
whitespace. The last grade in each list of three has a newline on the end of it,
meaning the convertLetter() function returns a zero (since “A” is not the same
as “A\n”). You will need to strip the whitespace off your line before splitting it
into the separate variables.

Getting an error that looks something like the following?

NameError: global name 'resultsFile' is not defined

Make sure that you opened the output file before you started writing to it! That
is how we initialize the variable for Python – we have to tell it what filename it’s
supposed to output to before we can use write() on it.

CMSC 201 – Computer Science I for Majors Page 13

Part 6: Completing Your Lab

To test your program, first enable Python 3, then run gpa_calculator.py.

You will need to view the results.txt file to check that everything worked.

bash-4.1$ python gpa_calculator.py

Tina Smith's GPA is 3.3333333333333335

Brian Rowe's GPA is 3.0

Kenneth Guy's GPA is 2.6666666666666665

Leonard Peters's GPA is 2.6666666666666665

Venus Guthrie's GPA is 2.6666666666666665

Jorden Casey's GPA is 2.6666666666666665

Tiger Hunter's GPA is 2.0

Clinton Jimenez's GPA is 2.0

Joseph Oliver's GPA is 1.3333333333333333

[etc]

Since this is an in-person lab, you do not need to use the submit command to

complete your lab. Instead, raise your hand to let your TA know that you are
finished.

They will come over and check your work – they may ask you to run your
program for them, and they may also want to see your code. Once they’ve
checked your work, they’ll give you a score for the lab, and you are free to
leave.

IMPORTANT: If you leave the lab without the TA checking
your work, you will receive a zero for this week’s lab. Make
sure you have been given a grade before you leave!

